Dual Regulation of miRNA Biogenesis Generates Target Specificity in Neurotrophin-Induced Protein Synthesis

نویسندگان

  • Yu-Wen A. Huang
  • Claudia R. Ruiz
  • Elizabeth C.H. Eyler
  • Kathie Lin
  • Mollie K. Meffert
چکیده

Control of translation is a fundamental source of regulation in gene expression. The induction of protein synthesis by brain-derived neurotrophic factor (BDNF) critically contributes to enduring modifications of synaptic function, but how BDNF selectively affects only a minority of expressed mRNAs is poorly understood. We report that BDNF rapidly elevates Dicer, increasing mature miRNA levels and inducing RNA processing bodies in neurons. BDNF also rapidly induces Lin28, causing selective loss of Lin28-regulated miRNAs and a corresponding upregulation in translation of their target mRNAs. Binding sites for Lin28-regulated miRNAs are necessary and sufficient to confer BDNF responsiveness to a transcript. Lin28 deficiency, or expression of a Lin28-resistant Let-7 precursor miRNA, inhibits BDNF translation specificity and BDNF-dependent dendrite arborization. Our data establish that specificity in BDNF-regulated translation depends upon a two-part posttranscriptional control of miRNA biogenesis that generally enhances mRNA repression in association with GW182 while selectively derepressing and increasing translation of specific mRNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression

MicroRNAs are small endogenous noncoding RNAs involved in posttranscriptional gene regulation. During microRNA biogenesis, Drosha and Dicer process the primary transcript (pri-miRNA) through a precursor hairpin (pre-miRNA) to the mature miRNA. The miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) with Argonaute proteins, the effector molecules in RNA interference (RNAi). Here,...

متن کامل

Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells

Considerable details about microRNA (miRNA) biogenesis and regulation have been uncovered, but little is known about the fate of the miRNA subsequent to target regulation. To gain insight into this process, we carried out kinetic analysis of a miRNA's turnover following termination of its biogenesis and during regulation of a target that is not subject to Ago2-mediated catalytic cleavage. By qu...

متن کامل

The Hippo pathway effectors TAZ/YAP regulate dicer expression and microRNA biogenesis through Let-7.

MicroRNAs (miRNAs) are genome-encoded small double-stranded RNAs that have emerged as key regulators of gene expression and are implicated in most aspects of human development and disease. Canonical miRNA biogenesis involves processing of ∼70-nucleotide pre-miRNA hairpins by Dicer to generate mature ∼22-nucleotide miRNAs, which target complementary RNA sequences. Despite the importance of miRNA...

متن کامل

A network analysis of miRNA mediated gene regulation of rice: crosstalk among biological processes.

To understand the network architecture of miRNA mediated regulations at the genomic and functional levels of rice, we have made an unambiguous annotation of the experimentally verified miRNAs, predicted their targets and the possible biological functions they can affect. Some functions, namely translational and protein modifications and photosynthesis are targeted by higher percentage of miRNA....

متن کامل

Up-Regulation of microRNA* Strands by Their Target Transcripts

During microRNA (miRNA) biogenesis, one strand of a 21-23 nucleotide RNA duplex is preferentially selected for entry into an RNA-induced silencing complex (RISC). The other strand, known as the miRNA* species, is typically thought to be degraded. Previous studies have provided miRNA* selection models, but it remains unclear how the dominance of one arm arises during the biogenesis of miRNA. Usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2012